
1

Winter 2019 CS 161 Exam II FORM 1

Please put your name, ID number and form number on the scantron, and leave the section number

blank!!!!

Please use a No. 2 pencil to fill the scantron!!!!

True(A) / False(B) (28 pts, 2 pts each):

1. The name of an array stores the value of the first array element.

2. In a function with pass-by-reference parameters, the values of the actual arguments are passed to the

function.

3. C++ performs array bounds checking, making it impossible for you to assign a pointer the address of

an element out of the boundaries of an array.

4. A recursive function can have at most one base case.

5. A recursive function must return a value.

6. In some cases, using recursion enables you to give a natural, straightforward, simple solution to a

program that would otherwise be difficult to solve.

7. You should not assign a non-zero, random integer value to a pointer variable.

8. Default arguments can be located anywhere in the list of function parameters.

9. A static array name is a constant pointer because the address stored in it cannot be changed.

10. Assume array1 and array2 are the names of two arrays. To assign the contents of array2 to

array1, you would use the following statement:

array1 = array2;

11. The elements accessed using two square brackets in a two-dimensional array are all the same data

type.

12. The C string company[12] can hold 12 characters and a ‘\0’ character.

13. The size of a static array is defined at compile time.

14. Just like pointers, you can change what any C++ reference refers to at any point.

Multiple Choice (72 pts, 3 pts each)

15. If your program makes too many recursive function calls, your program will cause a _______.

A. compiler error

B. runtime error

C. syntax error

D. heap error

2

Questions 16-19 are based on the following code:

void read_strings(③ ____ , int size) {

 for (int i = 0; i < size; i++)

 cin >> array[i];

}

int main(){

 string *arr = new string [5];

 read_strings(① , 5); //Function call

________②_________ //Free memory

return 0;

}

16. Which of the following is valid at ①?

A. arr[5]

B. arr

C. *arr

D. &arr

17. Which of the following will not give you a memory leak at ②?

A. delete arr;

B. delete arr [];

C. delete [] arr;

D. delete *arr;

18. Which of the following is valid at ③?

A. string *array;

B. string &array;

C. string arr[];

D. A and C;

19. Assume ① - ③ are correct, is each element in arr filled after calling read_strings?

A. Yes. The memory address of the array has been passed into the function, and therefore we can

change the content in the original array.

B. No. We passed the copy of the array into read_strings, and thus the content in the

original array does not change.

20. If a C-style string variable word stores “apple”, what will strlen(word) return?

A. 0

B. 4

C. 5

D. 6

3

Questions 21-25 are based on the following code:

void test(①){

 // code

}

int main () {

 int a = 0;

 int* ptr1 = &a;

 int** ptr2 = &ptr1;

 test(②);

 return 0;

}

21. Which of the following should be filled into ② if ① is int &var ?

A. &a or *ptr1

B. a or ptr1

C. a or *ptr1

D. &a or ptr1

22. Which of the following should be filled into ② if ① is int *var ?

A. &a or *ptr1

B. a or ptr1

C. a or *ptr1

D. &a or ptr1

23. Which of the following should be filled into ② if ① is int **var ?

A. *ptr1 or ptr2

B. &ptr1 or *ptr2

C. *ptr1 or *ptr2

D. &ptr1 or ptr2

24. Which of the following should be filled into ① if ② is &ptr1 ?

A. int var

B. int *var

C. int **var

D. int ***var

25. Which of the following should be filled into ① if ② is &ptr2 ?

A. int var

B. int *var

C. int **var

D. int ***var

4

26. Given the definition and code fragment:

int matrix[2][3];

int k = 0;

for(int i =0; i < 2; i++)

for (int j=0, j < 3; j++)

matrix[i][j] = k++;

The value of matrix[1][2] is

A. 2

B. 3

C. 4

D. 5

E. 6

27. What is the output of the following function call, given the function definition below?

int F(int n){

 if (n == 1)

 return 1;

 if (n == 2)

 return 2;

 if (n == 3)

 return 3;

 return F(n-1) + F(n-2) + F(n-3);

}

cout << F(5) << endl;

A. 5

B. 6

C. 11

D. 20

28. Assuming ptr is a pointer variable, what will the following statement output?

 cout << *ptr;

A. The value in the variable whose address is stored in ptr.

B. The string “*ptr”.

C. The address of the variable whose address is stored in ptr.

D. The address of the variable stored in ptr.

5

Questions 29-32 are based on the following code:

void func (① , int a, int b) {

 //code

}

int main(){

 int **two_d_arr = new int*[3];

 for(int i = 0; i < 3; i++){

 two_d_arr[i] = new int[4];

 for(int j = 0; j < 4; j++)

 two_d_arr[i][j] = 1;

}

 func (② , 3, 4);

________③_________ //Free memory

return 0;

}

29. C++ is row major, meaning that a two-dimensional array will be laid out by rows in memory. How

many rows and columns does two_d_arr have, based on the code above?

A. 3 rows, 4 columns

B. 4 rows, 3 columns

C. Cannot be defined

D. None of the above

30. According to the code above, which of the following is correct?

A. The double pointer two_d_arr, the row pointers, and the columns are all on the stack

B. The double pointer two_d_arr and row pointers is on the stack, and the columns are on the

heap

C. The double pointer two_d_arr is on the stack, and the row pointers and columns are on the

heap

D. The double pointer two_d_arr, the row pointers, and the columns are all on the heap

31. Which of the following is valid for ① and ②?

A. ① int** array ② two_d_arr

B. ① int** array ② &two_d_arr

C. ① int array[][] ② two_d_arr

D. ① int array[3][4] ② two_d_arr

6

32. Which of the following will not give you a memory leak or segmentation fault at ③?

A. for (int i = 0; i < 3; i++)
 delete [] two_d_arr[i];

 delete [] two_d_arr;

B. for (int i = 0; i < 4; i++)
 delete [] two_d_arr[i];

C. delete [] two_d_arr;

D. delete [][] two_d_arr;

33. What is the output of the following code, given the function definitions below?

void tester (int a, int &b){

 int c = 0;

 c = a + 2;

 a = a * 3;

 b = c + a;

}

int main () {

 int x = 2, y = 3;

 tester(y, x);

 cout << x << “ ” << y << endl;

 return 0;

}

A. 2 3

B. 2 10

C. 14 3

D. 14 9

34. Which of the following statement is valid C++ code?

A. int num = 0;
int ptr = #

B. float *ptr = 10.04;

C. char word1[5] = “word”;
char word2[10] = “computer”;

word1 = word2;

D. None of the above

35. Which of the following is a valid C string declaration?

A. char array[5] = “hello” ;

B. char array[4] = “hello”;

C. char array[] = “hello”;

D. None of the above

7

36. Which of the following is a valid C++ array declaration?

A. int []array;

B. float payments[10.23];

C. string numbers[];

D. double scores[25];

37. Which of the following statement is true about function overloading?

A. Overloaded functions may have the same name, same parameters, and same return type.

B. Overloaded functions may have the same name, same return type, but different parameters.

C. Overloaded functions may have the same name, same parameters, but different return type.

D. B and C

38. What does the following statement do?

 int *ptr = NULL;

 A. Create a variable named *ptr that will store an integer value.

 B. Create a variable named *ptr that will store an asterisk (*) and an integer value.

 C. Create a pointer variable named ptr that will store the address of an integer variable.

 D. Create a variable named *ptr that will store the NULL value.

Extra Credit (2 pts each):

39. What is wrong with the following code?

 int *p1, *p2;

 p1 = new int;

 p2 = new int;

 *p1 = 11;

 *p2 = 0;

 delete p2;

 p2 = p1;

 delete p1;

A. nothing

B. cannot reuse p2 after deleting it

C. You have a memory leak, since p2 is not deleted after re-assigned.

D. B and C

40. Which of the following is true about this statement:

sum += *array++;

A. This statement is illegal in C++.

B. This statement adds the dereferenced pointer’s value to sum, then increments the address stored

in the pointer.

C. This statement increments the dereferenced pointer’s value by one, then adds that value to sum.

D. None of the above

8

41. What is the output of the following code?
int array[2][3];

for(int i = 0; i < 2; i++){

 for(int j = 0; j < 3; j++){

 array[i][j] = i + j;

 cout << array[i][j] << " ";

 }

 cout << endl;

}

A. 0 1 2

1 2 3

B. 0 1

1 2

2 3

C. 0 0 0

1 1 1

D. 0 0

1 1

2 2

42. True(A)/False(B) You may use strcmp() to compare all the elements between two C-style strings.

43. True(A)/False(B) Elements in a two-dimensional static array have contiguous memory on the heap.

